Fleischer, J.; Schmidt-Ewig, J. P.:
In: Advanced Materials Research: Flexible Manufacture of Lightweight Frame Structures, Band 10 (2006) S. 163-172


The importance of rigid and self supporting space frame structures for the automotive and aerospace industry continually increases. To meet the market requirements for a flexible and competitive small batch production, innovative machine concepts must be investigated. By integrating handling and machining capabilities into one machine structure, redundant degrees of keedom can be reduced and a former idle economic potential can be made use of.
This paper introduces a systematic approach to reveal synergetic potentials that emerge by integrating two different fields of function, the handling and the machining. Therewith a matrix with technical solutions for a combination of handling and machining is generated. These solutions are the base for new machine concepts that fulfill both tasks with a minimal number of machine axes. The authors present a machine concept which is combined out of a four-axes parallel kinematics and a conventional serial kinematics. The two kinematic structures collaborate and allow the product flexible handling and machining of three dimensional rounded extrusions with a minimal technical effort. The machine concept is dimensioned and optimized for a maximal stiffness by the coupling of a multi body simulation to an extemal Parameter optimization software. The optimization results show that the stifhess of the machine concept could be explicitly improved.
This paper is based on investigations of the collaborative research centre SFB/TR10 which is kindly supported by the German Research Foundation (DFG).